
Polyspace® Bug Finder™
Release Notes

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Polyspace® Bug Finder™ Release Notes
© COPYRIGHT 2013–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

R2014a

Automatic project setup from build systems 2
Classification of bugs according to the Common Weakness
Enumeration (CWE) standard . 2

Additional coding rules support (MISRA-C:2004 Rule 18.2,
MISRA-C++ Rule 5-0-11) . 3

Support for GNU 4.7 and Microsoft Visual Studio C++ 2012
dialects . 3

Simplification of coding rules checking 3
Preferences file moved . 5
Security level support for batch analysis 6
Interactive mode for remote analysis 6
Default text editor . 6
Results folder appearance in Project Browser 7
Results manager improvements . 8
Support for Windows 8 and Windows Server 2012 10
Function replacement in Simulink plug-in 11
Check model configuration automatically before
analysis . 11

Additional back-to-model support for Simulink plug-in . . . 12
Additional analysis checkers . 12
Data range specification support . 12
Polyspace binaries being removed . 13
Improvement of floating point precision 13

R2013b

Introduction of Polyspace Bug Finder 16
Detection of run-time errors, data flow problems, and other
defects in C and C++ code . 16

Fast analysis of large code bases . 17
Compliance checking for MISRA-C:2004, MISRA-C++:2008,
JSF++, and custom naming conventions 17

Cyclomatic complexity and other code metrics 17
Eclipse integration . 18

iii

Traceability of code verification results to Simulink
models . 18

Access to Polyspace Code Prover results 18

iv Contents

R2014a

Version: 1.1

New Features: Yes

Bug Fixes: Yes

1

R2014a

Automatic project setup from build systems

In R2014a, you can set up a Polyspace® project from build automation scripts
that you use to build your software application. The automatic project setup
runs your automation scripts to determine:

• Source files

• Includes

• Target & Compiler options

To set up a project from your build automation scripts:

• At the command line: Use the polyspace-configure command. For more
information, see “Create Project from DOS and UNIX® Command Line”.

• In the user interface: When creating a new project, in the Project –
Properties window, select Create from build command. In the following
window, enter:

- The build command that you use.

- The folder from which you run your build command.

- Additional options. For more information, see “Create Project in User
Interface”.

Click . In the Project Browser, you see your new Polyspace
project with the required source files, include folders, and Target &
Compiler options.

• On the MATLAB® command line: Use the polyspaceConfigure function.
For more information, see “Create Project from MATLAB Command Line”.

Classification of bugs according to the Common
Weakness Enumeration (CWE) standard

In R2014a, Polyspace Bug Finder™ associates CWE IDs with many defects.
For the covered defects, the IDs are listed in the CWE ID column on the
Results Summary pane. To view the CWE ID column, right-click the
Results Summary tab and select the CWE ID column.

2

Additional coding rules support (MISRA®-C:2004 Rule 18.2, MISRA®-C++ Rule 5-0-11)

For more information, see “Common Weakness Enumeration from Bug Finder
Defects”.

Additional coding rules support (MISRA-C:2004 Rule
18.2, MISRA-C++ Rule 5-0-11)

The Polyspace coding rules checker now supports two additional coding rules:
MISRA C® 18.2 and MISRA® C++ 5-0-11.

• MISRA C 18.2 is a required rule that checks for assignments to overlapping
objects.

• MISRA C++ 5-0-11 is a required rule that checks for the use of the plain
char type as anything other than storage or character values.

• MISRA C++ 5-0-12 is a required rule that checks for the use of the signed
and unsigned char types as anything other than numerical values.

For more information, see “MISRA C:2004 Coding Rules” or “MISRA C++
Coding Rules”.

Support for GNU 4.7 and Microsoft Visual Studio
C++ 2012 dialects

Polyspace has supports two additional dialects: Microsoft® Visual Studio®

C++ 2012 and GNU® 4.7. If your code uses language extensions from these
dialects, specify the corresponding analysis option in your configuration.
From the Target & Compiler > Dialect menu, select:

• gnu4.7 for GNU 4.7

• visual11.0 for Microsoft Visual Studio C++ 2012

For more information, see Dialects for C or Dialects for C++.

Simplification of coding rules checking

3

R2014a

Compatibility Considerations: Yes

In R2014a, the Error mode has been removed from coding rules checking.
This mode applied only to:

• The option Custom for:

- Check MISRA C rules

- Check MISRA AC AGC rules

- Check MISRA C++ rules

- Check JSF C++ rules

• Check custom rules

The following table lists the changes that appear in coding rules checking.

Coding Rules
Feature

R2013b R2014a

New file wizard
for custom
coding rules.

For each coding rule, you can select three
results:
• Error: Analysis stops if the rule is
violated.

The rule violation is displayed on the
Output Summary tab in the Project
Manager perspective.

• Warning: Analysis continues even if
the rule is violated.

The rule violation is displayed on the
Results Summary pane in the Result
Manager perspective.

• Off: Polyspace does not check for
violation of the rule.

For each coding rule, you can select
two results:
• On: Analysis continues even if
the rule is violated.

The rule violation is displayed on
the Results Summary pane in
the Result Manager perspective.

• Off: Polyspace does not check
for violation of the rule.

Format of the
custom coding
rules file.

Each line in the file must have the
syntax:

rule off|error|warning #comments

Each line in the file must have the
syntax:

rule off|warning #comments

4

Preferences file moved

Coding Rules
Feature

R2013b R2014a

For example:

MISRA configuration - Proj1
10.5 off #don't check 10.5
17.2 error
17.3 warning

For example:

MISRA configuration - Proj1
10.5 off #don't check 10.5
17.2 warning
17.3 warning

Compatibility Considerations

For existing coding rules files that use the keyword error:

• If you run analysis from the user interface, it will be treated in the same
way as the keyword warning. The verification will not stop even if the rule
is violated. The rule violation will however be reported on the Results
Summary pane.

• If you run analysis from the command line, the verification will stop if
the rule is violated.

Preferences file moved

In R2014a, the location of the Polyspace preferences file has been changed.

Operating
System

Location before R2014a Location in R2014a

Windows® %APPDATA%\Polyspace %APPDATA%\MathWorks\MATLAB\R2014a\Polyspace

Linux® /home/$USER/.polyspace /home/$USER/.matlab/$RELEASE/Polyspace

For more information, see “Storage of Polyspace Preferences”.

5

R2014a

Security level support for batch analysis

When creating an MDCS server for Polyspace batch analyses, you can
now add additional security levels through the MATLAB Admin Center.
Using the Metrics and Remote Server Settings, the MDCS server is
automatically set to security level zero. If you want additional security for
your server, use the Admin Center button. The additional security levels
require authentication by user name, cluster user name and password, or
network user name and password.

For more information, see “Set MJS Cluster Security”.

Interactive mode for remote analysis

In R2014a, you can select an additional Interactive mode for remote
analysis. In this mode, when you run Polyspace Bug Finder on a cluster,
your local computer is tethered to the cluster through Parallel Computing
Toolbox™ and MATLAB Distributed Computing Server™.

• In the user interface: On the Configuration pane, under Distributed
Computing, select Interactive.

• On the DOS or UNIX command line, append -interactive to the
polyspace-bug-finder-nodesktop command.

• On the MATLAB command line, add the argument '-interactive' to
the polyspaceBugFinder function.

For more information, see “Interactive”.

Default text editor

In R2014a, Polyspace uses a default text editor for opening source files. The
editor is:

• WordPad in Windows

• vi in Linux

6

Results folder appearance in Project Browser

You can change the text editor on the Editors tab under
Options > Preferences. For more information, see “Specify Text Editor”.

Results folder appearance in Project Browser

In R2014a, the results folder appears in a simplified form in the Project
Browser. Instead of a folder containing several files, the result appears as
a single file.

• Format before R2014a

• Format in R2014a

The following table lists the changes in the actions that you can perform
on the results folder.

7

R2014a

Action R2013b R2014a

Open results. In the result folder,
double-click result file with
extension .psbf.

Double-click result file.

Open analysis options used for
result.

In the result folder, select
options.

Right-click result file and
select Open Configuration.

Open metrics page for batch
analyses if you had used the
analysis option Distributed
Computing > Add to results
repository.

In the result folder, select
Metrics Web Page.

Double-click result file.

If you had used the
option Distributed
Computing > Add to results
repository, double-clicking
the results file for the first
time opens the metrics web
page instead of the Result
Manager perspective.

Open results folder in your file
browser.

Navigate to results folder.

To find results
folder location, select
Options > Preferences.
View result folder location
on the Project and Results
Folder tab.

Right-click result file and
selectOpen Folder with File
Manager.

Results manager improvements

• In R2014a, you can view the extent of a code block on the Source pane by
clicking either its opening or closing brace.

8

Results manager improvements

Note This action does not highlight the code block if the brace itself is
already highlighted. The opening brace can be highlighted, for example,
with a Dead code defect for the code block.

9

R2014a

• In R2014a, the Verification Statistics pane in the Project Manager and
the Results Statistics pane in the Results Manager have been renamed
Dashboard.

On the Dashboard, you can obtain an overview of the results in a
graphical format. You can see:

- Code covered by analysis.

- Defect distribution. You can choose to view the distribution by:

• File

• Category or defect name.

- Distribution of coding rule violations. You can choose to view the
distribution by:

• File

• Category or rule number.
The Dashboard displays violations of different types of rules such as
MISRA C, JSF® C++, or custom rules on different graphs.

For more information, see “Dashboard”.

• In R2014a, on the Results Summary pane, you can distinguish between
violations of predefined coding rules such as MISRA C or C++ and custom
coding rules.

- The predefined rules are indicated by .

- The custom rules are indicated by .
In addition, when you click the Check column header on the Results
Summary pane, the rules are sorted by rule number instead of
alphabetically.

• In R2014a, you can double-click a variable name on the Source pane to
highlight other instances of the variable.

Support for Windows 8 and Windows Server 2012

Polyspace supports installation and analysis on Windows Server® 2012 and
Windows 8.

For installation instructions, see “Installation, Licensing, and Activation”.

10

Function replacement in Simulink® plug-in

Function replacement in Simulink plug-in
Compatibility Considerations: Yes

The following functions have been replaced in the Simulink® plug-in by the
function pslinkfun. These functions will be removed in a future release.

Function What
Happens?

Use This Function Instead

PolyspaceAnnotation Warning pslinkfun('annotations',...)

PolySpaceGetTemplateCFGFile Warning pslinkfun('gettemplate')

PolySpaceHelp Warning pslinkfun('help')

PolySpaceEnableCOMServer Warning pslinkfun('enablebacktomodel')

PolySpaceSpooler Warning pslinkfun('queuemanager')

PolySpaceViewer Warning pslinkfun('openresults',...)

PolySpaceSetTemplateCFGFile Warning pslinkfun('settemplate',...)

PolySpaceConfigure Warning pslinkfun('advancedoptions')

PolySpaceKillAnalysis Warning pslinkfun('stop')

PolySpaceMetrics Warning pslinkfun('metrics')

For more information, see pslinkfun

Check model configuration automatically before
analysis

For the Polyspace Simulink plug-in, the Check configuration feature
has been enhanced to automatically check your model configuration before
analysis. In the Polyspace pane of the Model Configuration options, select:

• On, proceed with warnings to automatically check the configuration
before analysis and continue with analysis when only warnings are found.

• On, stop for warnings to automatically check the configuration before
analysis and stop if warnings are found.

11

R2014a

• Off does not check the configuration before an analysis.

If the configuration check finds errors, Polyspace stops the analysis.

For more information about Check configuration, see “Check Simulink
Model Settings”.

Additional back-to-model support for Simulink
plug-in

In R2014a, the back-to-model feature is more stable. Additionally, support has
been added for Stateflow® charts in Target Link and Linux operating systems.

For more information, see “Identify Errors in Simulink Models”.

Additional analysis checkers

Polyspace Bug Finder can now check for two additional defects in C and C++:

• Wrong allocated object size for cast checks for memory allocations that
are not multiples of the pointer size.

• Line with more than one statement checks for lines that have
additional statements after a semicolon.

For more information, see Wrong allocated object size for cast and Line with
more than one statement.

Data range specification support

Data range specification (DRS) is available with Polyspace Bug Finder. You
can add range information to global variables.

You can also use DRS information with Polyspace Code Prover™. Similarly,
you can use DRS information from Code Prover in Bug Finder.

For more information, see “Inputs & Stubbing”.

12

Polyspace® binaries being removed

Polyspace binaries being removed
Compatibility Considerations: Yes

The following Polyspace binaries will be removed in a future release:

• polyspace-report-generator.exe

• polyspace-results-repository.exe

• polyspace-spooler.exe

• polyspace-ver.exe

Improvement of floating point precision

In R2013b, Polyspace improved the precision of floating point representation.
Previously, Polyspace represented the floating point values with intervals, as
seen in the tooltips. Now, Polyspace uses a rounding method.

For example, the analysis represents float arr = 0.1; as,

• Pre-R2013b, arr = [9.9999E^-2,1.0001E-1].

• Now, arr = 0.1.

13

R2013b

Version: 1.0

New Features: Yes

Bug Fixes: No

15

R2013b

Introduction of Polyspace Bug Finder

Polyspace Bug Finder is a new companion product to Polyspace Code Prover.
Polyspace Bug Finder analyzes C and C++ code to find possible defects and
coding rule violations. Bug Finder can run fast analyses on large code bases
with low false-positive results. Polyspace Bug Finder also calculates code
complexity metrics with Polyspace Metrics.

Bug Finder integrates with Simulink, Eclipse™, Visual Studio, and
Rhapsody® to help you analyze code from within your development
environment.

Detection of run-time errors, data flow problems,
and other defects in C and C++ code

Polyspace Bug Finder uses static analysis to find various defects for C and
C++ code with few false-positive results. The analysis does not require
program execution, code instrumentation, or test cases.

Some categories of defects are:

• Numeric

• Programming

• Static memory

• Dynamic memory

• Data-flow

To see a list of defects you can find, see Polyspace Bug Finder Defects.

Bug Finder analysis runs quickly, so you can fix errors and rerun analysis.

For information about running analyses, see Find Bugs.

16

http://www.mathworks.com/help/releases/R2013b/bugfinder/index.html#bt1buic
http://www.mathworks.com/help/releases/R2013b/bugfinder/run-verification.html

Fast analysis of large code bases

Fast analysis of large code bases

Polyspace Bug Finder uses an efficient analysis method which produces
results quickly, even from large code bases. Therefore you can fix errors and
rerun the analysis without having to wait. You can find more issues early on
in the development process and produce better quality code overall.

Compliance checking for MISRA-C:2004,
MISRA-C++:2008, JSF++, and custom naming
conventions

Polyspace Bug Finder can also check for compliance with coding rules. There
are four industry-defined rules you can select:

• MISRA C

• MISRA AC-AGC

• MISRA C++

• JSF C++

In addition, you can define rules to check for naming conventions.

You can run the coding rules checker separately, or at the same time as your
analysis.

For more information, see Check Coding Rules.

Cyclomatic complexity and other code metrics

Using Polyspace Metrics, Polyspace Bug Finder calculates various code
metrics, including cyclomatic complexity. These statistics are displayed using
Polyspace Metrics, an integrated Web interface. You can use these results to
track code quality over time. You can also share the code metrics, allowing
others to track your project’s progress.

17

http://www.mathworks.com/help/releases/R2013b/bugfinder/check-coding-rules-compliance-1.html

R2013b

Eclipse integration

Polyspace Bug Finder comes with an Eclipse plug-in that integrates Polyspace
into your development environment. You can set up options, run analyses,
view results, and fix bugs in the Eclipse interface. Using the Polyspace
plug-in, you can quickly find and fix bugs as you code.

For a tutorial on using the Polyspace Bug Finder plug-in, see Find Defects
from the Eclipse Plug-In.

Traceability of code verification results to Simulink
models

For generated code from Simulink models, Polyspace analysis results link
directly back to your Simulink model. You can trace defects back to the block
that is causing the bug.

In the Source Code view of the Results Manager, the block names appear
as links. When you select a link, the corresponding block is highlighted
in Simulink.

For a tutorial on using Polyspace Bug Finder with Simulink models, see Find
Defects from Simulink.

Access to Polyspace Code Prover results

A Polyspace Bug Finder installation also includes the Polyspace Code Prover
user interface. With only a Polyspace Bug Finder license, you cannot run local
Polyspace Code Prover verifications in the Polyspace Code Prover interface.
However, you can use the Polyspace Code Prover interface to review results
and upload comments to Polyspace Metrics.

For more information, see the Polyspace Code Prover Documentation.

18

http://www.mathworks.com/help/releases/R2013b/bugfinder/gs/find-defects-from-the-eclipse-plug-in.html
http://www.mathworks.com/help/releases/R2013b/bugfinder/gs/find-defects-from-the-eclipse-plug-in.html
http://www.mathworks.com/help/releases/R2013b/bugfinder/gs/find-defects-from-simulink.html
http://www.mathworks.com/help/releases/R2013b/bugfinder/gs/find-defects-from-simulink.html
http://www.mathworks.com/help/releases/R2013b/codeprover/index.html

	toc
	R2014a
	Automatic project setup from build systems
	Classification of bugs according to the Common Weakness Enumerat
	Additional coding rules support (MISRA-C:2004 Rule 18.2, MISRA-C
	Support for GNU 4.7 and Microsoft Visual Studio C++ 2012 dialect
	Simplification of coding rules checking
	Preferences file moved
	Security level support for batch analysis
	Interactive mode for remote analysis
	Default text editor
	Results folder appearance in Project Browser
	Results manager improvements
	Support for Windows 8 and Windows Server 2012
	Function replacement in Simulink plug-in
	Check model configuration automatically before analysis
	Additional back-to-model support for Simulink plug-in
	Additional analysis checkers
	Data range specification support
	Polyspace binaries being removed
	Improvement of floating point precision

	R2013b
	Introduction of Polyspace Bug Finder
	Detection of run-time errors, data flow problems, and other defe
	Fast analysis of large code bases
	Compliance checking for MISRA-C:2004, MISRA-C++:2008, JSF++, and
	Cyclomatic complexity and other code metrics
	Eclipse integration
	Traceability of code verification results to Simulink models
	Access to Polyspace Code Prover results

